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Multiplying Polynomials

Multiplying polynomials is a bit more challenging than adding and subtracting polynomials. We must use the 
distributive property to multiply each term in the first polynomial by each term in the second polynomial. We then 
combine like terms. We can also use a shortcut called the FOIL method when multiplying binomials. Certain special 
products follow patterns that we can memorize and use instead of multiplying the polynomials by hand each time. 
We will look at a variety of ways to multiply polynomials.

Multiplying Polynomials Using the Distributive Property

To multiply a number by a polynomial, we use the distributive property. The number must be distributed to each term 
of the polynomial. We can distribute the 2 in 2(x  + 7) to obtain the equivalent expression 2x + 14. When multiplying 
polynomials, the distributive property allows us to multiply each term of the first polynomial by each term of the 
second. We then add the products together and combine like terms to simplify.

This OpenStax book is available for free at http://cnx.org/content/col11758/latest
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How To…
Given the multiplication of two polynomials, use the distributive property to simplify the expression.

1. Multiply each term of the first polynomial by each term of the second.
2. Combine like terms.
3. Simplify.

Example  4	 Multiplying Polynomials Using the Distributive Property

Find the product.

(2x + 1) (3x 2 − x + 4)

Solution
2x (3x 2 − x + 4) + 1(3x 2 − x + 4)	 Use the distributive property.

(6x 3 − 2x 2 + 8x ) + (3x 2 − x + 4)	 Multiply.

6x 3 + (−2x 2 + 3x 2) + (8x − x) + 4	 Combine like terms.

6x 3 + x 2 + 7x + 4	 Simplify.

Analysi s	 We can use a table to keep track of our work, as shown in Table 1. Write one polynomial across the top and 
the other down the side. For each box in the table, multiply the term for that row by the term for that column. Then add 
all of the terms together, combine like terms, and simplify.

3x 2 −x +4
2x 6x 3 −2x 2 8x
+1 3x 2 −x 4

Table 1

Try It #4

Find the product.

(3x + 2) (x3 − 4x2 + 7)

Using FOIL to Multiply Binomials

A shortcut called FOIL is sometimes used to find the product of two binomials. It is called FOIL because we 
multiply the first terms, the outer terms, the inner terms, and then the last terms of each binomial.

The FOIL method arises out of the distributive property. We are simply multiplying each term of the first binomial by 
each term of the second binomial, and then combining like terms.

How To…
Given two binomials, use FOIL to simplify the expression.

1. Multiply the first terms of each binomial.
2. Multiply the outer terms of the binomials.
3. Multiply the inner terms of the binomials.
4. Multiply the last terms of each binomial.
5. Add the products.
6. Combine like terms and simplify.

Inner terms

First terms Last terms

Outer terms
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Example  5	 Using FOIL to Multiply Binomials

Use FOIL to find the product.

(2x − 10)(3x + 3)

Solution
	 Find the product of the first terms.

		

	 2x − 18	 3x + 3	 2x · 3x = 6x2

	 Find the product of the outer terms.

		

	 2x − 18	 3x + 3	 2x · 3 = 6x

	 Find the product of the inner terms.

		

	 2x − 18	 3x + 3	 −18 · 3x = −54x

	 Find the product of the last terms.

		

	 2x − 18	 3x + 3	 −18 · 3 = −54

	 6x2 + 6x − 54x − 54	 Add the products.

	 6x2 + (6x − 54x) − 54	 Combine like terms.

	 6x2 − 48x − 54	 Simplify.

Try It #5

Use FOIL to find the product.

(x + 7)(3x − 5)

Perfect Square Trinomials

Certain binomial products have special forms. When a binomial is squared, the result is called a perfect square 
trinomial. We can find the square by multiplying the binomial by itself. However, there is a special form that each 
of these perfect square trinomials takes, and memorizing the form makes squaring binomials much easier and faster. 
Let’s look at a few perfect square trinomials to familiarize ourselves with the form.

	 (x + 5)2 = x2 + 10x + 25
	 (x − 3)2 = x2 − 6x + 9
	 (4x − 1)2 = 4x2 − 8x + 1

Notice that the first term of each trinomial is the square of the first term of the binomial and, similarly, the last term of 
each trinomial is the square of the last term of the binomial. The middle term is double the product of the two terms. 
Lastly, we see that the first sign of the trinomial is the same as the sign of the binomial.

perfect square trinomials 
When a binomial is squared, the result is the first term squared added to double the product of both terms and 
the last term squared.

	 (x + a)2 = (x + a)(x + a) = x2 + 2ax + a2

This OpenStax book is available for free at http://cnx.org/content/col11758/latest
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How To…
Given a binomial, square it using the formula for perfect square trinomials.

1. Square the first term of the binomial.
2. Square the last term of the binomial.
3. For the middle term of the trinomial, double the product of the two terms.
4. Add and simplify.

Example  6	 Expanding Perfect Squares

Expand (3x − 8)2.

Solution	 Begin by squaring the first term and the last term. For the middle term of the trinomial, double the product 
of the two terms.

(3x)2 − 2(3x)(8) + (−8)2

Simplify.
9x2 − 48x + 64

Try It #6

Expand (4x − 1)2.

Difference of Squares

Another special product is called the difference of squares, which occurs when we multiply a binomial by another 
binomial with the same terms but the opposite sign. Let’s see what happens when we multiply (x + 1)(x − 1) using 
the FOIL method.

(x + 1)(x − 1) = x2 − x + x − 1
= x2 − 1

The middle term drops out, resulting in a difference of squares. Just as we did with the perfect squares, let’s look at a 
few examples.

(x + 5)(x − 5) = x2 − 25
(x + 11)(x − 11) = x2 − 121
(2x + 3)(2x − 3) = 4x2 − 9

Because the sign changes in the second binomial, the outer and inner terms cancel each other out, and we are left only 
with the square of the first term minus the square of the last term.

Q & A…
Is there a special form for the sum of squares?

No. The difference of squares occurs because the opposite signs of the binomials cause the middle terms to disappear. 
There are no two binomials that multiply to equal a sum of squares.

difference of squares 
When a binomial is multiplied by a binomial with the same terms separated by the opposite sign, the result is the 
square of the first term minus the square of the last term.

(a + b)(a − b) = a2 − b2

How To…
Given a binomial multiplied by a binomial with the same terms but the opposite sign, find the difference of squares.

1. Square the first term of the binomials.
2. Square the last term of the binomials.
3. Subtract the square of the last term from the square of the first term.
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Example  7	 Multiplying Binomials Resulting in a Difference of Squares

Multiply (9x + 4)(9x − 4).

Solution	 Square the first term to get (9x)2 = 81x2. Square the last term to get 42 = 16. Subtract the square of the last 
term from the square of the first term to find the product of 81x2 − 16.

Try It #7

Multiply (2x + 7)(2x − 7).

Performing Operations with Polynomials of Several Variables
We have looked at polynomials containing only one variable. However, a polynomial can contain several variables. All 
of the same rules apply when working with polynomials containing several variables. Consider an example:

(a + 2b)(4a − b − c)

a(4a − b − c) + 2b(4a − b − c)	 Use the distributive property.

4a2 − ab − ac + 8ab − 2b2 − 2bc Multiply.

4a2 + (− ab + 8ab) − ac − 2b2 − 2bc	 Combine like terms.

4a2 + 7ab − ac − 2bc − 2b2 Simplify.

Example  8	 Multiplying Polynomials Containing Several Variables

Multiply (x + 4)(3x − 2y + 5).

Solution	 Follow the same steps that we used to multiply polynomials containing only one variable.

x(3x − 2y + 5) + 4(3x − 2y + 5)	 Use the distributive property.

3x2 − 2xy + 5x + 12x − 8y + 20	 Multiply.

3x2 − 2xy + (5x + 12x) − 8y + 20	 Combine like terms.

3x2 − 2xy + 17x − 8y + 20	 Simplify.

Try It #8

Multiply (3x − 1)(2x + 7y − 9).

Access these online resources for additional instruction and practice with polynomials.

• Adding and Subtracting Polynomials (http://openstaxcollege.org/l/addsubpoly)

• Multiplying Polynomials (http://openstaxcollege.org/l/multiplpoly)

• Special Products of Polynomials (http://openstaxcollege.org/l/specialpolyprod)

This OpenStax book is available for free at http://cnx.org/content/col11758/latest

http://openstaxcollege.org/l/addsubpoly
http://openstaxcollege.org/l/multiplpoly
http://openstaxcollege.org/l/specialpolyprod
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1.4  Section Exercises

Verbal
1.	 Evaluate the following statement: The degree of a

polynomial in standard form is the exponent of the
leading term. Explain why the statement is true or
false.

2.	 Many times, multiplying two binomials with two
variables results in a trinomial. This is not the case
when there is a difference of two squares. Explain
why the product in this case is also a binomial.

3.	You can multiply polynomials with any number of
terms and any number of variables using four basic
steps over and over until you reach the expanded
polynomial. What are the four steps?

4.	 State whether the following statement is true and
explain why or why not:  A trinomial is always a
higher degree than a monomial.

Algebraic
For the following exercises, identify the degree of the polynomial.

5.	 7x − 2x2 + 13 6.	14m3 + m2 − 16m + 8 7.	  −625a8 + 16b4 8.	 200p − 30p2m + 40m3

9.	 x2 + 4x + 4 10.	 6y4 − y5 + 3y − 4

For the following exercises, find the sum or difference.
11.	 (12x2 + 3x) −(8x2 −19) 12.	 (4z3 + 8z2 − z) + (−2z2 + z + 6)
13.	 (6w2 + 24w + 24) − (3w − 6w + 3) 14.	 (7a3 + 6a2 − 4a − 13) + (−3a3 − 4a2 + 6a + 17)
15.	 (11b4 − 6b3 + 18b2 − 4b + 8) − (3b3 + 6b2 + 3b) 16.	 (49p2 − 25) + (16p4 − 32p2 + 16)

For the following exercises, find the product.
17.	 (4x + 2) (6x − 4) 18.	 (14c2 + 4c) (2c2 − 3c) 19.	 (6b2 − 6) (4b2 − 4) 20.	 (3d − 5)(2d + 9)
21.	 (9v − 11) (11v − 9) 22.	 (4t2 + 7t) (−3t2 + 4) 23.	 (8n − 4) (n2 + 9)

For the following exercises, expand the binomial.
24.	 (4x + 5)2 25.	 (3y − 7)2 26.	 (12 − 4x)2 27.	 (4p + 9)2

28.	 (2m − 3)2 29.	 (3y − 6)2 30.	 (9b + 1)2

For the following exercises, multiply the binomials.
31.	 (4c + 1)(4c − 1) 32.	 (9a − 4)(9a + 4) 33.	 (15n − 6)(15n + 6) 34.	 (25b + 2)(25b − 2)
35.	 (4 + 4m)(4 − 4m) 36.	 (14p + 7)(14p − 7) 37.	 (11q − 10)(11q + 10)

For the following exercises, multiply the polynomials.
38.	 (2x2 + 2x + 1) (4x − 1) 39.	 (4t2 + t − 7) (4t2 − 1) 40.	 (x − 1) (x2 − 2x + 1)
41.	 (y − 2) (y2 − 4y − 9) 42.	 (6k − 5) (6k2 + 5k − 1) 43.	 (3p2 + 2p − 10) (p − 1)
44.	 (4m − 13) (2m2 − 7m + 9) 45.	 (a + b) (a − b) 46.	 (4x − 6y) (6x − 4y)
47.	 (4t − 5u)2 48.	 (9m + 4n − 1) (2m + 8) 49.	 (4t − x)(t − x + 1)
50.	 (b2 − 1) (a2 + 2ab + b2) 51.	 (4r − d)(6r + 7d) 52.	 (x + y) (x2 − xy + y2)

Real-World Applications
53.	A developer wants to purchase a plot of land to build

a house. The area of the plot can be described by the 
following expression: (4x + 1)(8x − 3) where x is 
measured in meters. Multiply the binomials to find 
the area of the plot in standard form.

54.	A prospective buyer wants to know how much grain
a specific silo can hold. The area of the floor of the
silo is (2x + 9)2. The height of the silo is 10x + 10,
where x is measured in feet. Expand the square and
multiply by the height to find the expression that
shows how much grain the silo can hold.

Extensions
For the following exercises, perform the given operations.

55.	 (4t − 7)2 (2t + 1) − (4t2 + 2t + 11) 56.	 (3b + 6)(3b − 6) (9b2 − 36)
57.	 (a2 + 4ac + 4c2) (a2 − 4c2)


	AlgebraAndTrigonometry-OP 59
	AlgebraAndTrigonometry-OP 60
	AlgebraAndTrigonometry-OP 61
	AlgebraAndTrigonometry-OP 62
	AlgebraAndTrigonometry-OP 63
	AlgebraAndTrigonometry-OP 64
	AlgebraAndTrigonometry-OP 65
	AlgebraAndTrigonometry-OP 66
	AlgebraAndTrigonometry-OP 67



